I live in Groningen. It's a city of about 200,000, about 50,000 of whom are students at the universities. So I sort of thought it might resemble Kitchener-Waterloo, the college town where I did my undergraduate degree, but in fact I've never been anywhere quite like this before.
The problem with "beginner's mind"
I should say up front that I know nothing about authentic Zen Buddhism. But one of the concepts that has made it into popular culture that I rather like is "beginner's mind": an expert knows what she thinks about things, while a beginner sees everything anew and judges it on what it is. It sounds kind of charming, and like a recipe for creativity. But applying it too literally can get you in trouble.
Concretely, ASTRON (where I work) arranged for a company to come in and teach programming courses to anyone who wanted them. They taught three: Introductory Python, Numeric Python, and Advanced Python. Now, I think that's a brilliant idea: we astronomers all spend most of our time writing code at one level or another, and nobody seems to have bothered to teach us how to do it well. So that ASTRON (actually NWO I think) cares is a really good sign. So of course I wanted to participate. I have lots to learn about writing good programs. I don't think I'm an expert programmer, or even a Python expert, but that latter is partly because I try not to think of myself as an expert in anything. I knew the Introductory Python course would not be productive — I write python code every day. And the Numerical Python, again, was a good idea, but having written, for example, the reshape function in numpy, and the spatial module in scipy, I figured that was probably not going to be too productive either. But the Advanced Python course sounded promising. And I wanted to show my support for the whole idea. So I signed up.
Well, the course was the last three days, and it was a pretty good course, but not at all what I needed. Which should not have been much of a surprise: when I stopped to do the math, I realize that I wrote my first python program eighteen years ago. (Good God.) Still, it was interesting to see how they ran the course, and to think about how I would run one (because if I end up somewhere like McGill that has basically nothing for physics grad students, I will run one, official or not).
Concretely, ASTRON (where I work) arranged for a company to come in and teach programming courses to anyone who wanted them. They taught three: Introductory Python, Numeric Python, and Advanced Python. Now, I think that's a brilliant idea: we astronomers all spend most of our time writing code at one level or another, and nobody seems to have bothered to teach us how to do it well. So that ASTRON (actually NWO I think) cares is a really good sign. So of course I wanted to participate. I have lots to learn about writing good programs. I don't think I'm an expert programmer, or even a Python expert, but that latter is partly because I try not to think of myself as an expert in anything. I knew the Introductory Python course would not be productive — I write python code every day. And the Numerical Python, again, was a good idea, but having written, for example, the reshape function in numpy, and the spatial module in scipy, I figured that was probably not going to be too productive either. But the Advanced Python course sounded promising. And I wanted to show my support for the whole idea. So I signed up.
Well, the course was the last three days, and it was a pretty good course, but not at all what I needed. Which should not have been much of a surprise: when I stopped to do the math, I realize that I wrote my first python program eighteen years ago. (Good God.) Still, it was interesting to see how they ran the course, and to think about how I would run one (because if I end up somewhere like McGill that has basically nothing for physics grad students, I will run one, official or not).
Full post
Visualizing the new pet
I recently wrote about a new object I am studying: a millisecond pulsar with two white dwarf companions. There is lots more I want to say about it, but I think it would be nice to show what it looks like, or at least, to show a video I made trying to make visible what's going on:
Edited to note that Blogger's YouTube embedding is distinctly flaky; video is here.
This video shows the orbital motions in the triple system. The orbits are drawn to scale, showing the actual motions of the two stars (red and yellow) and the pulsar (white). The first ten seconds are played relatively slowly, showing the motion around the inner orbit, then we speed up to see the motion around the outer orbit. For a sense of the time scale, an "MJD" is a modified Julian day, so a single day long. The larger left panel shows all three bodies, with trails marking the motion of the outer companion and the center of mass of the inner system. The inset in the top right zooms in on the inner system, showing the pulsar and the companion, with trails marking their orbits. The dots that appear on the orbits mark moments when we have observations of the system, color-coded by telescope; it should be clear that we have quite thorough coverage of both orbits. Each measurement tells us the distance to the pulsar to within a kilometer, so that we can measure the tiny deviations of these orbits from perfect Keplerian ellipses, allowing us to reconstruct the orbit.
There's a little more to it than that.
This video shows the orbital motions in the triple system. The orbits are drawn to scale, showing the actual motions of the two stars (red and yellow) and the pulsar (white). The first ten seconds are played relatively slowly, showing the motion around the inner orbit, then we speed up to see the motion around the outer orbit. For a sense of the time scale, an "MJD" is a modified Julian day, so a single day long. The larger left panel shows all three bodies, with trails marking the motion of the outer companion and the center of mass of the inner system. The inset in the top right zooms in on the inner system, showing the pulsar and the companion, with trails marking their orbits. The dots that appear on the orbits mark moments when we have observations of the system, color-coded by telescope; it should be clear that we have quite thorough coverage of both orbits. Each measurement tells us the distance to the pulsar to within a kilometer, so that we can measure the tiny deviations of these orbits from perfect Keplerian ellipses, allowing us to reconstruct the orbit.
There's a little more to it than that.
Full post
Subscribe to:
Posts (Atom)